2. Write a sequence of instructions for SIC/XE to get ALPHA equal to 4*BETA-9. Assume that ALPHA and BETA are defined as in Fig.1.3(b). Use immediate addressing for the constants.

LDS #4 LDA BETA MULR S A LDS #9 SUB S STA ALPHA

3. Write a sequence of instructions for SIC to get ALPHA equal to the integer portion of BETA \div GAMMA. Assume that ALPHA and BETA are defined as in Fig.1.3(a).

LDA BETA DIV GAMMA STA

10. Suppose that RECORD contains a 100-byte record, as in Fig.1.7(a). Write a subroutine for SIC that will write this record onto device 05.

JSUB WRITE					
	WRITE	LDX	ZERO		
	WLOOP	TD	INDEV		
		JEQ	WLOOP		
		LDCH	RECORD, X		
		WD	INDEV		
		TIX	K100		
		JLT	WLOOP		
		RSUB			

11. Suppose that RECORD contains a 100-byte record, as in Fig. 1.7(b). Write a subroutine for SIC/XE that will write this record onto device 05. Use immediate addressing and register-to-register instructions to make the subroutine as efficient as possible.

JUB WRITE		
WRITE	LDX LDT	#0 #100
WLOOP	TD JEQ LDCH WD	INDEV WLOOP RECORD, X INDEV
TIXR JLT RSUB	T WLOOF	0